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Abstract. We present a new density-functional method which does not exploit the local density
approximation (LDA). In this method, we use an exchange–correlation energy which consists of
the exact exchange (EXX) energy and the correlation energy in the random-phase approximation
(RPA). A static approximation is used in the evaluation of the functional derivative of the RPA
correlation energy. The self-consistent results for solid Cu, Fe, Co, Ni, Si, and MnO (type-II
antiferromagnets) are presented. For the transition metals Cu, Fe, Co, and Ni, it is shown that
the correlation potential gives rise to a large contribution which has the opposite sign to the
exchange potential. The resulting eigenvalue dispersions and the magnetic moments are very
close to those of the LDA and experiments. On the other hand, the Fermi-contact parts of
the hyperfine field are rather different from the LDA results, and are in better agreement with
experiments. The band gap obtained for Si is larger than the LDA value by∼0.2 eV. For MnO,
the density of states shows good correspondence with data obtained by x-ray photoelectron
spectroscopy and bremsstrahlung isochromat spectroscopy.

1. Introduction

The optimized-effective-potential (OEP) method for electronic structure calculations was
first applied to atoms by Talman and Shadwick [1], who introduced it as a method of
restricted minimization of the Hartree–Fock (HF) total energy. In that method, they restricted
the one-particle potential to a local potential instead of the non-local HF potential. From the
viewpoint of the density-functional (DF) formalism, their calculations are considered as the
DF calculation with the Kohn–Sham (KS) exact exchange (EXX) without the correlation. In
recent years, we have extended the method so that it is now applicable also for solids [2–5].
In this form of the method, we take account of the correlation energy in the framework of
the local density approximation (LDA). On the other hand, Krieger, Li, and Iafrate (KLI)
[6, 7] developed a different type of approximation for the EXX potential. It was applied to
Si and Ge by Bylander and Kleinman in the framework of the pseudopotential method [8].
Recently, Sẗadeleet al [9] developed the EXX method without using the KLI approximation
within the pseudopotential theory. They applied the method to a series of semiconductors.

As was shown in the above studies, despite of the potentiality of the EXX method for
going beyond the LDA, the results were not always satisfactory. In particular, for transition
metals such as Fe [3], the method predicted occupied d bands which were too deep relative
to the s bands and also gave rise to too large magnetizations. This indicates that the LDA
correlation is not suitable for combining with EXX, and that the correlation consistent with
EXX should give rather large contributions cancelling the EXX contribution.
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There are some possible ways of taking into account the correlation energy more
rigorously. Here we select the method that is based on the DF theory. In this method, the
DF correlation energy is calculated with the KS orbitals. Our exchange–correlation (XC)
energy consists of the EXX energy and a correlation energy obtained in the random-phase
approximation (RPA). In section 2, we derive the OEP method as a restricted variational
form of the self-consistentGW -method. The static approximation used for the functional
derivative of the RPA correlation energy with respect to the density is explained. In section 3,
we explain how to implement the OEP method in the atomic sphere approximation (ASA). A
static screened Coulomb interaction, which is used for the evaluation of the RPA correlation,
is calculated by use of the product-basis method developed by Aryasetiawan and Gunnarsson
[11]. In section 4, we give the results obtained for some typical systems. For the transition
metals Fe, Co, Ni, and Cu, it gives rather good agreement with the LDA. For Si, the band
gap obtained is larger than that given by the LDA by∼0.2 eV. It is consistent with a
previous evaluation by Godby, Shlüter, and Sham [12]. For MnO, the result lies in between
the LDA and EXX results, and shows reasonable correspondence with data obtained by
x-ray photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy (XPS+BIS
data) [13].

2. Formalism

2.1. The self-consistentGW -method versus the OEP method

First, we review the so-called self-consistentGW -method (the SCGW method). The SCGW
equation is derived by minimizing the total energyE[G] which is a functional of the Green
functionG; it was originally introduced by Luttinger and Ward [14]. The Hamiltonian of a
system of electrons is written as

Ĥ =
∑
σ

∫
dr ψ̂†σ (r)

(
−∇

2

2m

)
ψ̂σ (r)+ V̂ee +

∑
σ

∫
dr (vext

σ (r)− µ)n̂σ (r) (1)

where

V̂ee = λe2

2

∑
σσ ′

∫
dr dr′

ψ̂†σ (r)ψ̂
†
σ ′(r

′)ψ̂σ ′(r′)ψ̂σ (r)
|r − r′|

n̂σ (r) = ψ̂†σ (r)ψ̂σ (r)
(2)

where we use the usual notation for the field operatorsψ̂σ (r), chemical potentialµ, spin
index σ , and external potentialvext

σ (r). The parameterλ is set to unity (it is later used as
an integration variable). Let us start fromW [J ], defined by

exp(W [J ]) = Tr

[
T exp

{
−
∫ β

0
dτ Ĥ +

∫
d1
∫

d2 ψ̂†σ1
(r1)J (1, 2)ψ̂σ2(r2)

}]
(3)

where we use the notation 1≡ r1σ1τ1 (06 τ 6 β). T stands for imaginary-time ordering,
and J (1, 2) is a source term.W [J ] is a finite-temperature generating functional for the
Green functions; itsnth derivative with respect toJ (1, 2) gives then-body Green function.
The first derivative ofW [J ] gives

δW [J ]

δJ (1, 2)
= −〈T ψ̂(2)ψ̂†(1)〉J ≡ −G(2, 1). (4)
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The bracket〈· · ·〉J denotes thermal averaging for a fixed external source fieldJ . When we
setJ = 0,G equals the Green function for the system. The effective action0[G] is defined
as the Legendre transform ofW [J ]:

0[G] = −W [J ] +
∫

d1
∫

d2 J (1, 2)
δW [J ]

δJ (1, 2)
. (5)

Here J should be treated as a functional ofG. If we assume that det(δG/δJ |J=JA ) 6= 0,
J as a functional ofG can be defined at least in the neighbourhood ofJ = JA. Also 0[G]
is well defined there. Then we can easily see that

δ0[G]

δG(2, 1)
= −J (1, 2). (6)

We can separate the functional0[G] into the kinetic, external, Coulomb, and XC terms,
following the coupling-integral method given in references [15–17]. Let us consider the
generating functionalWλ[J ], which is for the system with the coupling constantλe2

(06 λ 6 1). For eachλ, Jλ is fixed so as to generate the givenG(2, 1); that is,

δWλ[Jλ]

δJλ(1, 2)
= −G(2, 1). (7)

Note that we now considerG as the quantity of the zeroth order inλe2. The derivative
dWλ[Jλ]/dλ can be written as

dWλ[Jλ]

dλ
= −

∫ β

0
dτ 〈V̂ee(τ )〉G,λ −

∫
d1
∫

d2G(2, 1)
dJλ(1, 2)

dλ
. (8)

The subscriptsG andλ indicate functionals ofG andλ. Through the integration of equ-
ation (8) with respect toλ, we can write0[G] as

0[G] = 0λ=0[G] + e
2

2

∑
σ,σ ′

∫ β

0
dτ
∫

dr1 dr2
nσ (r1, τ )nσ ′(r2, τ )

|r1− r2| + 0xc[G] (9)

0xc[G] = e2

2

∑
σ,σ ′

∫ 1

0
dλ
∫ β

0
dτ
∫

dr1 dr2

( 〈ψ̂†σ (r1, τ )ψ̂
†
σ ′(r2, τ )ψ̂σ ′(r2, τ )ψ̂σ (r1, τ )〉G,λ

|r1− r2|

− nσ (r1, τ )nσ ′(r2, τ )

|r1− r2|
)

(10)

where

nσ (r1, τ ) ≡ G(r1στ, r1στ
+). (11)

0λ=0[G] is the kinetic+ external energy functional (non-interacting part) defined as the
Legendre transform ofWλ=0[G]. The second term on the right-hand side (r.h.s.) of equ-
ation (9) corresponds to the Coulomb term, and the third to the XC term as the functional of
G(1, 2). The diagrammatical rules for the evaluation of0xc[G] are rather straightforward
[18]. Hereafter we consider the zero-temperature limit in the case whereJ (1, 2) depends
only on τ1− τ2. Then0[G] can be reduced to the energy in the real-time formalism:

E[G] = Ek[G] + Eext[G] + ECou[G] + Exc[G].

δE[G]/δG = 0, corresponding to equation (6), determines the real-time Green functionG.
It can be separated into a pair of equations:

δEk

δG(1, 2)
+ V eff(1, 2) = 0 (12)

V eff(1, 2) = {VCou(r1)+ Vext(r1)}δ(1− 2)+6(1, 2) (13)
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where we have introduced the one-particle effective potentialV eff(1, 2), and the self-energy
6(1, 2), defined as6(1, 2)[G] ≡ δExc[G]/δG.

In the RPA,ERPA
xc [G] = Ex[G] + ERPA

c [G] is written as

Ex[G] = −e
2

2

∑
σ

∫ ∫
nσ (r, r

′)nσ (r′, r)
|r − r′| dr dr′ (14)

ERPA
c [G] = i

2

∫ 1

0

dλ

λ
Tr[(1− vλD)−1vλD − vλD] = −i

2
Tr[log(1− vD)+ vD] (15)

where the trace applies torσ t (I suppress the factor 1
/ ∫∞
−∞ dt for simplicity), nσ (r, r′) ≡

−iG(rσ t, r′σ t+), andD(1, 2) ≡ −iG(1, 2)G(2, 1). vλ is defined as

vλ(1, 2) = λe2δ(t1− t2)δσ1σ2/|r1− r2|.
v denotesvλ=1. The SCGW equation can be obtained if we use6RPA(1, 2)[G], which is
defined as the functional derivative ofERPA

xc [G], in equation (13).
However, it is rather difficult to solve the SCGW equation. As a substitution in the

SCGW equation, we takeE[G0] instead ofE[G]; G0 means the Green function which is
generated from the local andω-independent one-particle effective potential. This means
that we consider the optimum solution under such a constraint. This is nothing but the OEP
method. We restrict ourselves to the spin-diagonal case. For a given one-particle effective
potentialV eff

σ (r), G
0 is expressed as (δ→+0)

G0
σ (r1, r2, ω) =

∑
i

ψi∗
σ (r1)ψ

i
σ (r2)

ω − εiσ + iδ sgn(εiσ )
(16)

whereεiσ andψi
σ are the eigenvalues and eigenfunctions satisfying

[−∇2/(2m)+ V eff
σ (r)− εiσ ]ψi

σ (r) = 0.

Then the minimization equation

0=
∫

d1 d2
δE[G0]

δG0(1, 2)

δG0(1, 2)

δV eff
σ (r)

(17)

reduces to

δEk

δG0(1, 2)
+ V eff

σ1
(r1)δ(1− 2) = 0 (18)

V eff
σ1
(r1) ≡ V Cou(r1)+ V ext(r1)+ V xc

σ1
(r1) (19)∫

d1 d2
[
V xc
σ1
(r1)δ(1− 2)−6RPA(1, 2;G0)

]δG0(1, 2)

δV eff
σ (r)

= 0. (20)

Equation (18) is the ordinary equation used to determine the non-interacting one-body Green
function forV eff. Equation (20), which determinesV xc, is rewritten as

δERPA
xc

δV eff
σ (r)

=
∫

d3r ′
δnσ (r

′)
δV eff

σ (r)
V xc
σ (r

′). (21)

Note that the matrixδnσ (r′)/δV eff
σ (r) is spin diagonal becauseV eff includes the chemical

potential.
Our variational parameter isV eff; therefore, we can consider our method (relying on the

one-to-one correspondence betweenV eff
σ (r) and nσ (r)) as a DF method. ThenV xc

σ (r) is
identified asδERPA

xc /δnσ (r). The only difference from the ordinary LDA calculation is that
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V xc is calculated following equation (21). In the definition ofERPA
xc using equations (14)–

(15), we useG0 andD0(1, 2) ≡ −iG0(1, 2)G0(2, 1), instead ofG andD(1, 2). D0(1, 2)
is written as

D0
σ (r1, r2, ω) =

occ∑
i

unocc∑
j

ψi∗
σ (r1)ψ

i
σ (r2)ψ

j∗
σ (r2)ψ

j
σ (r1)

×
{

1

ω − εjσ + εiσ + iδ
− 1

ω + εjσ − εiσ − iδ

}
. (22)

Such an OEP method at the RPA level has already been proposed by Gross, Dobson, and
Petersilka in reference [19], where they discuss the relation of the OEP method to the Van
der Waals interaction (we omit the termfxc corresponding to the vertex correction).

In conclusion, the OEP method with EXX+ RPA could be a starting point for the
GW -approximation. As for the excitation energy, we can show that (minimum band
gap) + (discontinuity in V xc) obtained by means of an OEP agrees with the minimum
gap given by theGW -approximation (see appendix A).

2.2. The static approximation for the derivative ofERPAc

We use a static approximation in the evaluation ofδERPA
xc /δV eff

σ (r). The variationδEc (we
omit the superscript ‘RPA’ hereafter) with respect toδD0 can be written as

δEc = i

2
Tr[Wp δD

0] (23)

Wp = vsc− v = v(1− vD0)−1v (24)

where vsc ≡ (1 − vD0)−1v denotes the dynamical screened Coulomb interaction in the
RPA. We evaluateδEc in a static approximation, i.e., we replaceWp(r1, r2, t1 − t2) with
Wω=0

p (r1, r2)δ(t1− t2), where we define

Wω=0
p (r1, r2) ≡

∫ ∞
−∞

dt Wp(r1, r2, t).

This approximation is justifiable if the relaxation time of the dynamical screeningvsc,
typically the plasma oscillation timescale, is sufficiently shorter than that of the density
fluctuation iD0. We know that

iD0
σ (r1, r2, t1 = t2) = nσ (r1)δ(r1− r2)− [nσ (r1, r2)]

2.

Here we use the non-local density

nσ (r1, r2) ≡
occ∑
i

ψi∗
σ (r1)ψ

i
σ (r2).

Then we obtainδEc = δEc1+ δEc2, where we define

δEc1 ≡ −1

2

∑
σ

∫
dr1 dr2 W

ω=0
p (r1, r2)δ([nσ (r1, r2)]

2) (25)

δEc2 ≡ 1

2

∑
σ

∫
dr Wω=0

p (r, r) δnσ (r). (26)

δEc1 andδEc2 correspond to the correlated part of the screened exchange and the Coulomb-
hole terms, respectively (see p 40 in reference [20]). As forδEc1, we can calculate its func-
tional derivativeδEc1/δV

eff
σ (r) from Wω=0

p (r1, r2), nσ (r1, r2), and δnσ (r1, r2)/δV
eff
σ (r)
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through equation (25). We denote the resulting potential asV c1
σ (r) = δEc1/δnσ (r).

Obviously, we do not need the inversion of equation (21) forδEc2/δnσ (r). δEc2/δnσ (r)
is spin independent and is written asV c2

σ (r) = 1
2W

ω=0
p (r, r). If we evaluateδEc from

equation (23) without using the static approximation, we obtain a result essentially equivalent
to equation (27) in reference [12], which was used by Godby, Shlüter, and Sham to discuss
the eigenvalues of the true density-functional theory. In section 4, we show that our result
for Si is consistent with their result.

3. The OEP method in the LMTO-ASA

The OEP method with EXX+ RPA is implemented within the ASA. First, we review the
EXX method in the LMTO-ASA. Then we explain how to treat the RPA correlation within
this scheme.

3.1. The LMTO-ASA and EXX

Any points in the space are denoted by(r, R), whereR is the index for the atomic sphere
(AS) and r = (r, θ, φ) is a vector denoting the position in each AS (06 r 6 R̄). In
addition, we restrict ourselves to the spherical one-particle effective potential; that is,V eff

σ (r)
is replaced byV eff

σ (r, R). Due to the one-to-one correspondence betweenV eff
σ (r, R) and

ns
σ (r, R), we can considerExc as a functional ofns

σ (r, R). Here ns
σ (r, R) denotes the

spherically averaged density.
In the LMTO method [21], the wave functionψkj (r, R) with the energyεkj is written

as a linear combination of the localized MT orbitals (MTOs). The MTOs are constructed
as linear combinations of the basis functions in each AS. The radial partφRl(r) of the basis
functions in each AS is determined by the radial Schrödinger equation (we use the units
h̄ = e2/2= 2m = 1 hereafter) as{

d2

dr2
+
[
ενRl − l(l + 1)

r2
− V eff(r, R)

]}
rφRl(r) = 0. (27)

ενRl is determined in such a way that it is regular atr = 0, and its logarithmic derivative
satisfiesDRl = R̄φ′Rl/φRl|r=R̄ at r = R̄ (the overbar denotes the derivative with respect to
r). With φRl(r) and φ̇Rl(r) (the overdot denotes the energy derivative, andφ̇Rl(r) in this
paper corresponds tȯφγRl(r) in reference [22]), we can express the wave function as

ψkj (r, R) =
∑
L

{AkjRLφRl(r)+ BkjRLφ̇Rl(r)}YL(θ, φ) (28)

where theYL are the real harmonics. To calculateAkjRL and BkjRL we need the LMTO
HamiltonianHMT and the overlap integralOMT for the MT potential. They are determined
by the potential parametersPRl = (εν, C,

√
1,p, γ )Rl , which are also used to determine

the coefficients forφRlYL and φ̇RlYL appearing in the MTOs.
The EXX energyEx of equation (14) in the ASA can be evaluated through the procedure

proposed by Svane and Andersen [23].Ex for each spin (suppressing the spin index) for
the valence electrons can be rewritten as

Ex = −
∑

W(R,R′)IRR′(L̃1, L̃2, L̃3, L̃4)X
∗
RL̃3R′L̃2

XRL̃1R′L̃4
(29)

XRL̃1R′L̃4
=

occ∑
kj

A
kj∗
RL̃1
A
kj

R′L̃4
. (30)
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Here L̃ = (L, IP) is a composite index, whereIP takes the value 0 or 1: 0 corresponds
to φ and 1 toφ̇; e.g.,Akj

RL̃
denotesAkjRL andBkjRL. (R,R′) andW(R,R′) denote the non-

equivalent pairs of the ASs and their weights. The summation of equation (29) is taken for
(R,R′), L̃1, L̃2, L̃3, andL̃4. The quantityIRR′ is defined as

IRR′(L̃1, L̃2, L̃3, L̃4) =
∫
R

d3r

∫
R′

d3r ′
f ∗
RL̃1
(r)f ∗

R′L̃2
(r′)fRL̃3

(r)fR′L̃4
(r′)

|(r +R)− (r′ +R′)| (31)

fRL̃(r) = φRl̃(r)YL(θ, φ). (32)

The contributions from the core–core and the core–valence parts toEx can be included by
extending the index̃L so that it runs over both(L, IP) and the index representing the core
wave functions.

We can calculateδEx/δVeff(r, R) by the use of a relation which is symbolically written
as

δEx

δVeff
=
(
δEx

δX

δX

δPRl

)
δPRl
δVeff

+ δEx

δIRR′

δIRR′

δVeff
. (33)

In order to calculateδEx/δPRl in the parentheses of the r.h.s., we use the simple two-point
numerical derivative. Other quantities in the r.h.s. of equation (33) are calculated from
φRl̃(r) and δφRl̃(r)/δVeff(r

′, R) in each AS. The latter quantity is expressed by the use of
the two independent solutions of the radial Schrödinger equation, equation (27) [1] (and
their energy derivatives). The logarithmic derivativesDRl are not the variational parameters,
but are the quantities determined self-consistently in such a way thatενRl is set equal to the
centre of the gravity of the occupied states in the projected density of states (DOS). On the
basis of an equation similar to equation (33), we can also calculateδns(r, R)/δVeff(r

′, R′).
Finally, we obtainV x(r, R) = δEx/δn

s(r, R) from the ASA version of equation (21):

δEx

δV eff
σ (r, R)

=
∑
R′

∫ R̄′

0
dr ′

δns
σ (r
′, R′)

δV eff
σ (r, R)

V x
σ (r
′, R′). (34)

Here, the summation with respect toR′ is carried out only within the unit cell. We do not
have to consider an impurity-like potential variation in the calculation ofδEx/δVeff(r, R)

and δns(r
′, R′)/δVeff(r, R). Instead, we take a variationδVeff(r, R) preserving the crys-

tal symmetry. The corresponding responses inns are then compatible with the crystal
symmetry.

3.2. RPA correlation

In the evaluation of the functional derivative of the RPA correlation in the LMTO-ASA, we
first have to calculateWω=0

p . This is done by extending the product-basis method proposed
by Aryasetiawan and Gunnarsson [11]. The products of the radial functions are defined as

B̃i(r) ≡ φR̃n1l1
(r)φR̃n2l2

(r)YL(θ, φ) (35)

wherei = (R̃, n1l1, n2l2, L), andl of L satisfies|l1− l2| 6 l 6 l1+ l2 (we neglect products
containing φ̇; see [11]). R̃ denotes the AS in the primitive cell; thusR = (R̃,T ). T
denotes a crystal translation vector. Taking the Bloch sum ofB̃i(r) gives

B̃ki (r,T ) = eik·T B̃i(r). (36)

D0 andD = D0(1− vD0)−1 can be expanded into these Bloch bases. The matrix elements
of D are written as (ω = 0 is suppressed)

D(k, i, j) = 〈Bki |D|Bkj 〉 (37)
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whereBkj denotes the orthogonalized functions ofB̃kj . Then we can expandWp = vDv
as

Wp(r, R, r
′, R′) =

∑
k,s,t

Cks(r,T )Wp(k, s, t)C
∗
kt (r

′,T ′) (38)

Wp(k, s, t) =
∑
i,j

〈Cks |v|Bki〉D(k, i, j)〈Bkj |v|Ckt 〉 (39)

where new orthogonalized-basis functionsCkt are constructed fromC̃t (r) =
{rB̃i(r), rnYL(θ, φ)} in the same manner as was used for constructingBkj . Heren denotes
an integer satisfying 06 n 6 nMax

0 (for l = 0), and 16 n 6 nMax
l (for l > 1). In our

previous paper [5], we usedBkt even for this expansion ofWp. In that case,V c in the
vicinity of a nucleus was not so reliable becauseB̃i(r) for the core states changes very
rapidly whenr→ 0. For C̃t (r), the rapid changes are suppressed by the factorr.

With this expansion forWω=0
p , we can evaluateδEc1/δV

eff
σ (r, R), in the same manner

as equation (33), where we have to replaceIR,R′ by JR,R′ , which is defined with
Wω=0

p (r, R, r′, R′) instead of 1/|(r +R)− (r′ +R′)| in equation (31). Therefore we can
calculateV c1

σ (r, R) by the inversion of equation (34) fromδEc1/δV
eff
σ (r, R).

66
-

?
V
xc

(A) nk=120, SREL, CC

?
V
e�

�

?

?
(B) nk=35, NREL, CC

?
W

!=0
p

(C) V xc through Eq.(34):
nk=120, NREL, no CC

?
V
xc

�

Figure 1. The self-consistency cycle for the EXX+ RPA. nk denotes the number ofk-points
in the IBZ (we show thenk used in the case for metals). ‘SREL’ denotes the scalar-relativistic
case. ‘CC’ denotes the combined correction [21].

We have developed a code to perform the self-consistent calculation forV c together
with V x. The flow chart of the self-consistent cycle is shown in figure 1.

There are three parts of the calculation:

(A) the self-consistent scalar-relativistic calculation with combined correction for a
givenV xc;

(B) the non-relativistic (NREL) calculation for obtainingWp for a givenV eff;
(C) the NREL calculation ofV xc with no combined correction for a givenV eff and

Wω=0
p .

Parts (B) and (C) are carried out to obtainV xc for givenV eff. Our calculation is based on
the LMTO-4 code [24]. In the calculation ofWp of part (B), we have used a part of the
GW -program [25, 26] provided by Aryasetiawan, though we use a tetrahedron method [27]
in the calculation ofD0. Part (C) is developed from the LMTO-ASA EXX code used in
reference [4]. The calculation is scalar relativistic with a non-relativisticV xc (the previous
results [2–5] were non-relativistic).
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4. Results and discussion

We give the results of three different types of self-consistent calculation:

(i) those obtained using the OEP method with EXX and the RPA correlation, denoted
by EXX+ RPA;

(ii) those obtained using the OEP method with the EXX energy and the LDA correlation,
denoted by EXX;

(iii) the results of usual LDA.

As the LDA correlation, we use the parametrization given by von Barth and Hedin [28].
This LDA gives the same total energy as the EXX+ RPA in the case of the homogeneous
electron gas.

4.1. Cu, Fe, Co, and Ni

We use the experimental lattice constants at zero temperature, 6.809, 5.406, 6.682, and
6.644 au [29] for Cu(fcc), Fe(bcc), Co(fcc), and Ni(fcc), respectively. ForEx andEc, we
take pairs(R,R′) within up to the second-nearest neighbours and treat 4s, 4p, and 3d as
valence orbitals. In procedure (B) of figure 1, the calculation ofWω=0

p , we use 35k-points
in the IBZ, and we use 120k-points in parts (A) and (C). We use a minimum number
of k-points for part (B) to reduce the computational work. We use product basis of 96
Bis, and 190̃Cts. We omit the core eigenfunctions of 1s2s2p in the calculation ofD0 of
equation (22).

In order to evaluate the numerical errors due to the cut-offs of the number ofk-points
and the number of the basis̃Cts, we have calculated the changes in the results occurring
when we change these numbers (by carrying out the first iteration from the converged
results). For Fe, we have done the calculations with 72k-points for part (B) of figure 1 and
the calculations for some different number ofC̃ts. In addition, we have done the calculation
including the 1s2s2p-core contributions toD0. They indicate that the errors in all of the
eigenvaluesεkj − µ are less than 0.01 eV.

In figure 2, we show the self-consistentV xc = V x + V c1+ V c2. In our previous work,
we were not able to determine the constant part included inV xc because we calculated
the functional derivativesδEx/δns(r) and so on under the constraint that the number of
electrons is fixed [2–5]. In the present calculation, we calculate these derivatives without
imposing such a constraint. This makes it possible to determineV x and V c1 including
their constant parts through the inversion of equation (34). TheV xc obtained by using the
EXX +RPA are rather close to those obtained using the LDA.V c shows a large difference
between up and down spins and it almost cancels the contribution ofV x, which alone gives
too large a magnetic moment [3].

The contribution ofV c2 is largely cancelled byV c1 in the vicinity of the core region.
This can be explained by the fact thatδn(r1, r2) is sufficiently short ranged for a given
δn(r) in this region, which allows us to evaluateδEc approximately by use ofWω=0

p (r1, r1)

instead ofWω=0
p (r1, r2) in equations (25) and (26). In this case, we haveδEc1+ δEc2 = 0

because ∫
dr1 D

0
σ (r1, r2, t1 = t2) = 0.

On the other hand, we see a rather large cancellation betweenV x and V c1 in the outer
region (r & 1.0 au). This is because the main contribution toδEc1 in equation (25) comes
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Figure 2. The exact exchange potentialV x and the RPA correlation potentialV c = V c1+ V c2

for Cu, Ni, Co, and Fe. The LDA XC potential [28], used as the reference, is calculated for the
density determined by the self-consistent calculation using the EXX+ RPA.
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from the integral in the regionvω=0
sc ∼ 0, where we expect the behaviour ofWω=0

p to be as
follows: Wω=0

p (r1, r2) ∼ −1/|r1− r2|.
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E
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rg
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R
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Figure 3. Comparison ofV c2.

V c2 itself has the meaning of a measure of the screening length: if we assume a simple
form for the screening given byvω=0

sc (r1, r2) = exp(−κ|r1 − r2|)/|r1 − r2|, we can set
V c2 = −κ by definition. In figure 3, we replotV c2 for comparison. TheV c2s for Fe, Co,
and Ni are very similar, though they are different from that of Cu, which is rather flat for
r & 1.0 au. Since we have little contribution from the 3d states toD0 in equation (22) in
the case of Cu, the difference indicates the effects of the screening by 3d electrons.

The eigenvalue dispersions are shown in figure 4 together with those calculated by using
the usual LDA, and by using the EXX. The results obtained from the EXX+RPA are very
close to those obtained by using the LDA, and are very different from the results obtained
using EXX.

Table 1. Calculated spin magnetic moments (µB). We use the experimental lattice constants
(see the text). The experimental spin magnetic moments are deduced from the saturation
magnetization and theg-values [39]. In parentheses, we give the values for the lattice constants
obtained using the LDA [40].

LDA EXX EXX + RPA Experiment

Fe 2.22(2.13) 3.40 2.05(2.00) 2.12
Co 1.59(1.54) 2.25 1.57(1.52) 1.59
Ni 0.61(0.58) 0.68 0.57(0.57) 0.56

In our method, we determine the screened Coulomb interactionWω=0
p and V eff self-

consistently at the same time. This makes the method applicable to a wide range of solids.
However, our results for the energy bands in the present metallic systems are very close to the
LDA results. This implies that it may not be necessary to determineWω=0

p self-consistently;
that is, we are allowed to use the fixedWω=0

p calculated from the LDA eigenvalues (and
eigenfunctions) during the self-consistent calculation. We have tried such a calculation for
Fe, and obtained the magnetic moment 2.10µB, which is close to the self-consistent value
2.05µB given in table 1. Thus we can safely useWω=0

p from the LDA in most cases.
We show the calculated Fermi-contact parts of the hyperfine fields in table 2. They
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Table 2. The Fermi-contact part of the hyperfine field (kG). The nuclear sizes are taken into
account. The corresponding experimental data are taken from reference [31].

4s
Total 1s 2s 3s (valence)

Fe
EXX + RPA −329 + 86 −734 + 370 −52
LDA −279 −19 −516 + 302 −46
Experiment −375

Co
EXX + RPA −323 + 37 −635 + 327 −52
LDA −235 −17 −429 + 267 −57
Experiment −314

Ni
EXX + RPA −135 + 1 −251 + 132 −17
LDA −85 −8 −178 + 114 −14
Experiment −114

are rather different from the LDA results. By the use of the self-consistently determined
V xc, we calculate the hyperfine fields by means of the scalar-relativistic KKR-ASA code
developed by Akai [30], where the wave function near the core is carefully treated and the
core-size effects are taken into account [30]. The large positive parts ofV xc

↑ − V xc
↓ near

the nucleus (figure 2) cause the strong negative polarization in the 2s state. In addition,
our calculation shows positive polarization in the 1s state. This is different from the LDA
result, which gives a negative polarization for the 1s state. We think that this comes from
the strong 1s–2s and 1s–2p exchange interaction in the tail region of the 1s state. In order to
gain the exchange energy, the 1s state should polarize negatively in the tail region, resulting
in positive polarization near the nucleus. Our method can take into account the screened
exchange effects in rather a reasonable way, whereas the LDA essentially fails in such a
region where∇n/n is very large [31]. The present method improves the agreement with
experiments considerably.

4.2. Si and MnO

The lattice constant for Si is 8.40 au (R̄Si = R̄Es = 2.526 au) where Es denotes the
empty spheres, and that for MnO (a type-II antiferromagnet) is assumed to be 10.26 au
(R̄Mn = 2.923 au andR̄O = 2.2 au). For MnO and Si, we use a smaller number of
C̃ts (e.g. 126C̃ts for the Mn AS); we have checked that this is enough to reproduce the
eigenvalues with an accuracy better than within 0.01 eV in the case of Fe. The numbers
of k-points in the IBZ are, respectively, 19 and 29 in MnO and Si in all of the procedures
((A), (B), and (C) of figure 1). We take the pairs(R,R′) within up to the second-nearest
neighbours for Si, and within the first-nearest neighbours for MnO. In figure 2, we show the
self-consistentV xc. The constant parts ofV x andV c1 are fixed arbitrarily for presentation
purposes; they are not determined uniquely by our zero-temperature method in the case of
insulators.

The eigenvalues of Si are shown in table 3. Using the EXX+ RPA does not enlarge
the band gaps very much from the LDA values. For example, the minimum gap increases by
only 0.19 eV. The corresponding value given by Godby, Shlüter, and Sham in reference [12]
was 0.14 eV. We can say that the agreement between these values is reasonable, considering
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Table 3. Eigenvalues (in eV) for Si calculated by the EXX+RPA, by the EXX and by the LDA
(scalar-relativistic) methods. They are given relative to the eigenvalue of025′v (the top of the
valence band). In addition, we show the results of the true DF calculation by Godby, Shlüter,
and Sham.

EXX EXX + RPA LDA Godbyet ala Experimentb

Si
L2′v −9.57 −9.75 −9.77
L1v −6.86 −7.09 −7.15
L3′v −1.13 −1.18 −1.20 −1.21(−1.22) −1.2± 0.2, −1.5
L1c 2.04 1.58 1.35 1.62(1.53) 2.1, 2.4± 0.15
L3c 3.62 3.34 3.22 3.49(3.37) 4.15± 0.1

01v −11.86 −12.08 −12.11 −12.5± 0.6
015c 3.05 2.78 2.65 2.68(2.57) 3.4
02′c 3.83 3.34 2.96 3.66(3.56) 4.2

X1v −7.75 −7.93 −7.96
X4v −2.79 −2.90 −2.92 −2.9,−3.3± 0.2
X1c 1.29 0.75 0.56

Eg 1.15 0.62 0.43 0.66(0.52) 1.17

a Reference [12]. The LDA eigenvalues shown in parentheses are slightly different from our
LDA values because of the difference in computational details.
b The experimental values are taken from reference [41] for Si.
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Figure 5. The exact exchange potentialV x and the RPA correlation potentialV c for Si. The
LDA XC potential [28], used as the reference, is calculated for the density determined by the
self-consistent calculation using the EXX+ RPA. There exists an ambiguity in the constant
shifts forV x andV c.

the difference in the computational method; their method used pseudopotentials and was not
self-consistent but was free from the static approximation described in section 2 forWp. In
figure 5, we see thatV c cancels the large difference ofV x between Si and empty spheres.
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Figure 6. The DOS for MnO.

As a result,V xc obtained using the EXX+ RPA becomes very close to that obtained from
the LDA.

We show the DOS of MnO in figure 6. To plot the eigenvalues of the unoccupied
states for MnO precisely, we recalculate these values withενRl , which are set to about the
eigenvalue of the bottom of the conduction bands [24]. The results obtained by using the
EXX + RPA are very different from those obtained using the LDA; the exchange splitting
of Mn(3d),≈8 eV, is much larger than the LDA value,≈4 eV, and smaller than the EXX
value,≈13 eV [4]. The DOS shows good correspondence with the XPS+ BIS data on
MnO [13]. For such a system as MnO, with a large band gap, we cannot expect large
screening effects like in metals. Therefore, it is reasonable that the EXX+ RPA results lie
in between the LDA and EXX results. We can see this point also from figure 7, where
we show the self-consistentV xc: the contribution ofV x is only partially cancelled byV c,
which is different from the case for metals.

In contrast to the LDA results, the tops of the valence bands obtained by using the
EXX+RPA have large O(2p) components. The exchange effect, which works as an attract-
ive force and was not correctly treated in the LDA, pushes down the localized occupied
bands relative to the unoccupied bands. The effect is stronger for Mn(3d) bands than for
O(2p) bands because Mn(3d) is more localized. Our method can give a reasonable screening
effect for the exchange. It gives a good agreement with experiments as regards the DOS.
The corresponding energy bands are shown in figure 8. The bottom of the conduction bands
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Figure 7. V xc for MnO. In (b), we show the decomposition ofV xc = V c1+ V c2.

is s-like, and the minimum gap of 2.3 eV obtained from the EXX+ RPA is much larger
than the LDA result, though it still is smaller than the experimental values of 3.7± 0.1 eV
[32]. The spin magnetic moment of 4.69µB gives a better agreement with the experiments
(4.79 µB–4.58 µB [33, 34]).

In reference [26], for NiO it was shown that theGW -calculation withWp based on
the LDA eigenvalues gave poor results because of the LDA band gap being too small,
and that self-consistency ofGW was necessary. We can avoid this difficulty of theGW -
calculation by use of the OEP method; we expect that theGW -approximation starting from
the eigenvalues and eigenfunctions given by the EXX+ RPA method will give reasonable
agreement with experiments.
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4.3. Further discussion

Exc consists of all of the contributions from all of the pairs(R,R′). However, we can expect
the contributions ofR 6= R′ not to be large compared with the contribution ofR = R′, and
they might be negligible. In order to examine this point, we have performed an on-site-only
EXX+RPA calculation, where we take only theR = R′ term into account. The difference
from the full calculation is not so large for Fe; it gives a slightly larger moment, 2.10µB.
The bottom of the valence band (the bottom of the s bands) relative to the Fermi level is
pushed up by∼0.5 eV, though the d bands are essentially unchanged. On the other hand, the
difference in the DOS from the full calculation is not so small in the case of MnO, as shown
in figure 9. In this case, the on-site-only calculation gives narrower valence bands, and the
conduction bands are pushed up by∼1 eV, although the spin magnetic moment changes
little (4.71µB). In conclusion, the on-site-only approximation works, but the quality of the
result depends on the systems and on the physical quantities which are calculated.
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Let us discuss two possible sources of the existing differences between our results and
those obtained using the true DF: (i) the RPA, and (ii) the static approximation for the
RPA. In order to take account of the effects beyond the RPA, we have to treatfxc given in
reference [19], which corresponds to the vertex correction. Some parts of the contribution
due tofxc might be taken into account by LDA-like approximations; one of the simple ways
to do this is to add the difference between the LDA XC calculated by using the RPA [28]
and the one calculated by using a more accurate scheme [35]. We tried the above method,
but the correction turned out to be rather small; the magnetization of Fe was enhanced by
0.05µB (this value is similar to that in the corresponding LDA case). However, we are not
very confident about whether the correction is really meaningful or not. As for the static
approximation for the RPA, the dynamical effects may be simulated by makingvω=0

sc closer
to v (no relaxation limit). This should reduce the magnitude ofV c. Therefore the position
of the d bands relative to the s band should be somehow pushed down for the Cu case (see
figure 2). This estimation concerning (ii) is opposite in the case of the LDA. In the case
of the LDA, we can easily show that the d bands calculated by using the LDA in the RPA
[28] are pushed up from those obtained by using its static approximation. In conclusion, it
seems rather difficult to evaluate (ii) on the basis of a simple LDA-like idea; we have not
yet succeeded in giving any reasonable evaluations for the magnitude of the errors due to
(i) and (ii).

5. Summary

We have presented a new method for carrying out self-consistent electronic structure
calculations, the OEP method with the EXX+ RPA within the LMTO-ASA. The method
determines not onlyV eff, but alsoWp in a self-consistent manner. For Fe, Co, Ni, and
Cu, the agreements with experiments as regards hyperfine interactions are improved from
the LDA results, although the energy bands and the magnetic moments are very close to
those obtained using the LDA. For Si, the minimum gap is only 0.19 eV larger than the
LDA result. This is in reasonable agreement with the results from previous work [5]. On
the other hand, the exchange splitting for MnO is much larger than the LDA result and
in good agreement with experiments [13]. We expect that theGW -calculation starting
from the eigenvalues self-consistently determined by the OEP method will give reasonable
agreement with experiments. We have not developed the code to calculateERPA

c itself yet.
The static approximation in the evaluation of its functional derivativeδERPA

c /δns cannot be
applicable. We are now trying such calculations to determine lattice constants and other
cohesive properties.
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Appendix A. Discontinuity of V xc and the band gap

The inversion equation for obtainingV xc(r) ≡ δExc/δn(r) is

δExc

δV eff(r)
=
∫

dr ′
δn(r′)
δV eff(r)

δExc

δn(r′)
. (A1)
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In the case of insulators with band gaps, we have a discontinuity inV xc. This comes from
the differences between two limits: (a)µ→ µ+ and (b)µ→ µ−. We can easily show that

δExc

δV eff(r)
= δExc

δV eff(r)
+ δExc

δµ

1

δN/δµ

δN

δV eff(r)
(A2)

δn(r′)
δV eff(r)

= δn(r′)
δV eff(r)

+ δn(r
′)

δµ

1

δN/δµ

δN

δV eff(r)
(A3)

where only the second terms on the r.h.s. are dependent on the limits. The first terms (with
underlines) are the quantities defined under the condition of fixed total numbers of electrons;
their integrals with respect tor′ are equal to zero.N denotes the total number of electrons
per cell. δ/δµ corresponds to the constant shift ofV eff(r). By substituting the solution of
V xc + C± (C± denotes the constant part for each limit) for equation (A1), we can obtain
two equations for determiningV xc andC:

δExc

δV eff(r)
=
∫

dr ′
δn(r′)
δV eff(r)

V xc(r′) (A4)

(
δExc

δµ

)
±
=
∫

dr ′
(
δn(r′)
δµ

)
±
(V xc(r′)+ C±). (A5)

Equation (A4) determinesV xc to within a constant. Apart from such a constant,V xc is
independent of the method of taking the limits (a) and (b). Equation (A5), which determines
C, can be rewritten as

1Exc

∣∣
± = 1V xc

∣∣
± + C± (A6)

where1Exc is the difference between twoExcs, one for adding and another for subtracting
one electron by shiftingµ in the statek, which corresponds to the lowest unoccupied
state or the highest occupied state. It is equal to6RPA(k, εk). Therefore the discontinuity
1xc ≡ C+ − C− can be written as

1xc = (6RPA(k+, εk+)− 〈k+|V xc|k+〉)− (6RPA(k−, εk−)− 〈k−|V xc|k−〉) (A7)

where we use1V xc = 〈k|V xc|k〉. 1xc agrees with the band gap which is calculated by
using theGW -approximation. This equation is a generalization of the equation used in the
evaluation of the discontinuity in reference [9].
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[21] Andersen O K, Jepsen O and Glötzel D 1985Highlights of Condensed-Matter Theoryed F Bassani, F Fumi

and M P Tosi(Amsterdam: North-Holland) p 59
[22] Andersen O K, Pawloska Z and Jepsen O 1986Phys. Rev.B 34 5253
[23] Svane A and Andersen O K 1986Phys. Rev.B 34 5512
[24] van Schilfgaarde M, Paxton T A, Jepsen O and Andersen O K 1992 The TB-LMTO Programversion 4

(Max-Planck-Institut f̈ur Festk̈orperforschung)
[25] Aryasetiawan F 1992Phys. Rev.B 46 13 051
[26] Aryasetiawan F and Gunnarsson O 1995Phys. Rev. Lett.74 3221

Aryasetiawan F and Karlsson K 1996Phys. Rev.B 54 5353
[27] Rath J and Freeman A J 1975Phys. Rev.B 11 2109
[28] The RPA level of the LDA, given by

von Barth U and Hedin L 1972J. Phys. C: Solid State Phys.5 1629
[29] American Institute of Physics Handbook1972 3rd edn (New York: AIP)
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