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Abstract. We present a new density-functional method which does not exploit the local density
approximation (LDA). In this method, we use an exchange—correlation energy which consists of
the exact exchange (EXX) energy and the correlation energy in the random-phase approximation
(RPA). A static approximation is used in the evaluation of the functional derivative of the RPA
correlation energy. The self-consistent results for solid Cu, Fe, Co, Ni, Si, and MnO (type-II
antiferromagnets) are presented. For the transition metals Cu, Fe, Co, and Ni, it is shown that
the correlation potential gives rise to a large contribution which has the opposite sign to the
exchange potential. The resulting eigenvalue dispersions and the magnetic moments are very
close to those of the LDA and experiments. On the other hand, the Fermi-contact parts of
the hyperfine field are rather different from the LDA results, and are in better agreement with
experiments. The band gap obtained for Si is larger than the LDA valueO® eV. For MnO,

the density of states shows good correspondence with data obtained by x-ray photoelectron
spectroscopy and bremsstrahlung isochromat spectroscopy.

1. Introduction

The optimized-effective-potential (OEP) method for electronic structure calculations was
first applied to atoms by Talman and Shadwick [1], who introduced it as a method of
restricted minimization of the Hartree—Fock (HF) total energy. In that method, they restricted
the one-particle potential to a local potential instead of the non-local HF potential. From the
viewpoint of the density-functional (DF) formalism, their calculations are considered as the
DF calculation with the Kohn—Sham (KS) exact exchange (EXX) without the correlation. In
recent years, we have extended the method so that it is now applicable also for solids [2-5].
In this form of the method, we take account of the correlation energy in the framework of
the local density approximation (LDA). On the other hand, Krieger, Li, and lafrate (KLI)
[6, 7] developed a different type of approximation for the EXX potential. It was applied to
Si and Ge by Bylander and Kleinman in the framework of the pseudopotential method [8].
Recently, Shdeleet al [9] developed the EXX method without using the KLI approximation
within the pseudopotential theory. They applied the method to a series of semiconductors.

As was shown in the above studies, despite of the potentiality of the EXX method for
going beyond the LDA, the results were not always satisfactory. In particular, for transition
metals such as Fe [3], the method predicted occupied d bands which were too deep relative
to the s bands and also gave rise to too large magnetizations. This indicates that the LDA
correlation is not suitable for combining with EXX, and that the correlation consistent with
EXX should give rather large contributions cancelling the EXX contribution.
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There are some possible ways of taking into account the correlation energy more
rigorously. Here we select the method that is based on the DF theory. In this method, the
DF correlation energy is calculated with the KS orbitals. Our exchange—correlation (XC)
energy consists of the EXX energy and a correlation energy obtained in the random-phase
approximation (RPA). In section 2, we derive the OEP method as a restricted variational
form of the self-consistent; W-method. The static approximation used for the functional
derivative of the RPA correlation energy with respect to the density is explained. In section 3,
we explain how to implement the OEP method in the atomic sphere approximation (ASA). A
static screened Coulomb interaction, which is used for the evaluation of the RPA correlation,
is calculated by use of the product-basis method developed by Aryasetiawan and Gunnarsson
[11]. In section 4, we give the results obtained for some typical systems. For the transition
metals Fe, Co, Ni, and Cu, it gives rather good agreement with the LDA. For Si, the band
gap obtained is larger than that given by the LDA 9.2 eV. It is consistent with a
previous evaluation by Godby, Stér, and Sham [12]. For MnO, the result lies in between
the LDA and EXX results, and shows reasonable correspondence with data obtained by
x-ray photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy BXS
data) [13].

2. Formalism

2.1. The self-consisteid W-method versus the OEP method

First, we review the so-called self-consistéhi -method (the SCGW method). The SCGW
equation is derived by minimizing the total energyG] which is a functional of the Green
function G; it was originally introduced by Luttinger and Ward [14]. The Hamiltonian of a
system of electrons is written as

2
A= Z / dr ] <r)<—%)% () + Ve + Z / dr (v7(r) — Wiie (7) @)
where

. el L U@L (o (7)o (1)
Vee — 7 ;/dr dT‘ |:r- — r/| (2)

Ao (1) = Yl (), (1)

where we use the usual notation for the field operatlygr), chemical potential, spin
index o, and external potential®(r). The parametek is set to unity (it is later used as
an integration variable). Let us start frowi[J], defined by

B
exp(W[J]) = Tr [T exp{—/ dr ﬁ+/d1/d2 Wl (r)J 2)1/702(7«2)” (3)
0

where we use the notations 10171 (0 < 7 < B). T stands for imaginary-time ordering,
and J(1, 2) is a source term.W[J] is a finite-temperature generating functional for the
Green functions; itath derivative with respect td (1, 2) gives thern-body Green function.
The first derivative ofW[J] gives

SW[J]
§J(1,2)

—(TyyTD), =-62 D). 4
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The bracket- - -); denotes thermal averaging for a fixed external source fielVhen we
setJ = 0, G equals the Green function for the system. The effective adtj@r] is defined
as the Legendre transform &f[J]:

SWI[J]

r[G] = —W[J] +/d1/d2 0255 (5)

Here J should be treated as a functional Gf If we assume that d&¥G/5J|,;-,,) # O,
J as a functional ofG can be defined at least in the neighbourhood e Ja. Also I'[G]
is well defined there. Then we can easily see that

r[G]

562 1)
We can separate the functiong|G] into the kinetic, external, Coulomb, and XC terms,
following the coupling-integral method given in references [15-17]. Let us consider the
generating functionaW,[J], which is for the system with the coupling consta?
(0 < A < 1). For eachn, J, is fixed so as to generate the givéer2, 1); that is,

SWi[ 5]

84, (1,2
Note that we now consideG as the quantity of the zeroth order ir?. The derivative
dw,[J;]/dx can be written as

WLl _ / e (Venos — [ a1 [ azee 22 @

The subscriptsG and X indicate functionals ofz andA. Through the integration of equ-
ation (8) with respect ta, we can writel'[G] as

—-J(1, 2. (6)

=-G(2,1). (7)

2 B /
I[G] = Dol Gl + 5 3 / dr / dry drp "2 T D02 D) L e (9)
2 ~Jo Ir1 — 72
2 1 B it Al 7 7
Gl = e_Zf dA/ drfdrl dry ((%(7’1, DY, (12, Do (T2, V6 (1, T))G.a
2~Jo 0 |71 — 72|
_ ng(r1, Dng (12, r)> (10)
|r1 — 7o
where
ne(r1, 7) = G(riot, r1ot™). (11)

I—o[G] is the kinetic+ external energy functional (non-interacting part) defined as the
Legendre transform of,_o[G]. The second term on the right-hand side (r.h.s.) of equ-
ation (9) corresponds to the Coulomb term, and the third to the XC term as the functional of
G(1,2). The diagrammatical rules for the evaluationIgf[G] are rather straightforward
[18]. Hereafter we consider the zero-temperature limit in the case wh@re?) depends

only ont; — 2. ThenI'[G] can be reduced to the energy in the real-time formalism:

E[G] = Ei[G] + Eex{G] + Ecol G] + Exc[G].
S8E[G]/8G = 0, corresponding to equation (6), determines the real-time Green fun@tion
It can be separated into a pair of equations:
SEx
8G(1,2)
Ve(1,2) = (Veou(ry) + Vex(rn)}8(1 — 2) + B(L, 2) (13)

+vef1,2) =0 (12)
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where we have introduced the one-particle effective poteRtfi(1, 2), and the self-energy
(1, 2), defined asz (1, 2)[G] = § Ex[G]/5G.
In the RPA,ERPAIG] = E4[G] + ERPA[G] is written as

2 / ’
E[G] = _%Z/f o PO (M 1) Gy (14)

=
i
EPG = [

where the trace applies tert (I suppress the factor/1(*_dr for simplicity), n, (r, ') =
—iG(rot,rot™), andD(1, 2) = —iG(1, 2)G(2, 1). v, is defined as

(1, 2) = Ae%8(t1 — 12)85,0,/ 171 — T2l

v denotesv,_;. The SCGW equation can be obtained if we B#&A(1, 2)[G], which is
defined as the functional derivative 68™[G], in equation (13).

However, it is rather difficult to solve the SCGW equation. As a substitution in the
SCGW equation, we tak&[G"] instead of E[G]; G° means the Green function which is
generated from the local and-independent one-patrticle effective potential. This means
that we consider the optimum solution under such a constraint. This is nothing but the OEP
method. We restrict ourselves to the spin-diagonal case. For a given one-particle effective
potential V& (r), G° is expressed as (— +0)

Yyt (r) g (r2)

) y
dTA T~ v.0) 0D v, D] = 5 Togd—vD) + D] (15)

0 _
G, (r1, o, w)_lZa)—ef,+i(Ssgr(6f,) (16)
wheree! andy! are the eigenvalues and eigenfunctions satisfying
[—V?/@m) + VET(r) — €]yl (r) = 0.
Then the minimization equation
SE[G°] 8G°(1,2)
= 1d2 17
0 /d d 8GO(1,2) sVefi(r) (17)
reduces to
SE\ off
P 1-2)= 1
5GO(L 2) + V, (r)d( )=0 (18)
Vi) = V) + Vi) + VE(r) (19)
8GO(1, 2)
1d2[VX¥(r)s(l—2) — =RPAL, 2, GO = 2
/d d2[V°(r1)s(1 - 2) .26 e (20)

Equation (18) is the ordinary equation used to determine the non-interacting one-body Green
function for V. Equation (20), which determingg*®, is rewritten as

SEC [ b1 (1)
SVET(r) SVEf(r)

Vaew). (21)

Note that the matri%na(r’)/svfﬁ(r) is spin diagonal becausé®™ includes the chemical
potential.

Our variational parameter ig¢; therefore, we can consider our method (relying on the
one-to-one correspondence betwég‘ﬁ'(r) andn,(r)) as a DF method. TheW) “(r) is
identified ass ERPA/8n, (r). The only difference from the ordinary LDA calculation is that
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V*¢ is calculated following equation (21). In the definition BR using equations (14)—
(15), we useG® and D°(1, 2) = —iG°(1, 2)G°(2, 1), instead ofG and D(1,2). D°(1,2)
is written as

0OCC unocc

DY (r1, 12, 0) = Y Y Y)Y (r) ¥ (r2) Y] (r)
i

X { - ! - — . ! . } (22)
w—€ +e +i8 w+el —e —is

Such an OEP method at the RPA level has already been proposed by Gross, Dobson, and

Petersilka in reference [19], where they discuss the relation of the OEP method to the Van

der Waals interaction (we omit the teryfy. corresponding to the vertex correction).

In conclusion, the OEP method with EXX RPA could be a starting point for the
GW-approximation. As for the excitation energy, we can show that (minimum band
gap + (discontinuity in V*¢) obtained by means of an OEP agrees with the minimum
gap given by theG W-approximation (see appendix A).

2.2. The static approximation for the derivative 6f*4

We use a static approximation in the evaluatiors 85/ Vel (). The variations E. (we
omit the superscript ‘RPA’ hereafter) with respectstb® can be written as

SE = lzTr[Wp 5D°] (23)

Wp=vse—v=v(l- vDO)’lv (24)

where vs. = (1 — vD%~%v denotes the dynamical screened Coulomb interaction in the
RPA. We evaluaté E. in a static approximation, i.e., we repla®,(r1, ro2, t1 — t2) with
Wg’zo(rl, r2)8(t1 — t2), where we define

oo
Wy=0(ry. 72) E/ dr Wo(rs, 72, 1).
—o0

This approximation is justifiable if the relaxation time of the dynamical screenigg
typically the plasma oscillation timescale, is sufficiently shorter than that of the density
fluctuation iD°. We know that

iD2(r1, 72, t1 = 12) = Ny (r1)8(r1 — 12) — [ny(r1, 12)]%

Here we use the non-local density

occ

ne(re, ma) = YY)yl (ra).
Then we obtaiE. = § E¢; + 8 Eco, Where we define

-1
81 = — ;/drl dry Wy=C(r1, 72)8 ([ns (11, 2)]%) (25)

SEcy = %Z: / dr W=0(r, 1) 6ne (7). (26)

8 E.1 andé§ E¢, correspond to the correlated part of the screened exchange and the Coulomb-
hole terms, respectively (see p 40 in reference [20]). Ao, we can calculate its func-
tional derivatives Ec1/8VE () from We=0(ry, 12), no (r1,72), and dng (r1, 72)/8VE (1)
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through equation (25). We denote the resulting potentialVaSr) = §Ec1/8n,(r).
Obviously, we do not need the inversion of equation (21)BEy/dny(r). SEc2/dns (1)

is spin independent and is written azgcz(r) = %W,;”:O(r, r). If we evaluateSE. from
equation (23) without using the static approximation, we obtain a result essentially equivalent
to equation (27) in reference [12], which was used by GodbyjtBhland Sham to discuss

the eigenvalues of the true density-functional theory. In section 4, we show that our result
for Si is consistent with their result.

3. The OEP method in the LMTO-ASA

The OEP method with EXX- RPA is implemented within the ASA. First, we review the
EXX method in the LMTO-ASA. Then we explain how to treat the RPA correlation within
this scheme.

3.1. The LMTO-ASA and EXX

Any points in the space are denoted @y R), whereR is the index for the atomic sphere
(AS) andr = (1,6, ¢) is a vector denoting the position in each AS £Or < R). In
addition, we restrict ourselves to the spherical one-particle effective potential; tht (s,

is replaced byVef(r, R). Due to the one-to-one correspondence betweégf(r, R) and
ns(r, R), we can considetE,. as a functional ofn3(r, R). Herend(r, R) denotes the
spherically averaged density.

In the LMTO method [21], the wave functiop*/ (r, R) with the energy”/ is written
as a linear combination of the localized MT orbitals (MTOs). The MTOs are constructed
as linear combinations of the basis functions in each AS. The radiappdrt) of the basis
functions in each AS is determined by the radial ®dmger equation (we use the units
I = e?/2 = 2m = 1 hereafter) as

P

€,r 1S determined in such a way that it is regularrat 0, and its logarithmic derivative
satisfiesDg; = R, /dril,—z atr = R (the overbar denotes the derivative with respect to
r). With ¢ (r) and g (r) (the overdot denotes the energy derivative, apglr) in this
paper corresponds tﬁ%l(r) in reference [22]), we can express the wave function as

YR R) =Y (AR ori(r) + Bildri(r)}YL(O. ¢) (28)
L

d? Il+1
{ + |:€uRl _X ; ) _ Ve, R)} }V¢R1(’”) =0. (27)

where theY; are the real harmonics. To calculazeé?L and B’,j-z we need the LMTO
Hamiltonian Hyt and the overlap integradyr for the MT potential. They are determined
by the potential parametefBg; = (e,, C, v/A, p, y)r, Which are also used to determine
the coefficients fokg Y, and¢g Y, appearing in the MTOs.

The EXX energyE of equation (14) in the ASA can be evaluated through the procedure
proposed by Svane and Andersen [23], for each spin (suppressing the spin index) for
the valence electrons can be rewritten as

EX = — Z W(R,R’) IRR’(Zla Zz, Zg, Z4)X223R/ZZXR21R’Z4 (29)
ooe
XRE,RT, = ; ARLAR'D' (30)
J
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Here L = (L, Ip) is a composite index, wherg takes the value 0 or 1: O corresponds

to ¢ and 1 tog; e.g., A’;’L denotesARL and B’“ (R, R") and Wz gy denote the non-
equivalent pairs of the ASs and their weights. The summation of equation (29) is taken for
(R,R"), L1, Ly, L3, andL,. The quantity/z g is defined as

(T)f*, (T/)fRL ("“)fRL (7“/)
Irw (L1, Lo, L3, L d3/d3’“1 KL : :
RR( 1 2 3 4) / ) |(’I”+R) (’P +R/)|

SRI(P) = dr7(r)YL(O, ¢). (32)
The contributions from the core—core and the core-valence pafg tan be included by
extending the index. so that it runs over botliL, Ip) and the index representing the core
wave functions.

We can calculaté Ex /8 Ve (r, R) by the use of a relation which is symbolically written
as

(31)

SEy _ <5Ex 6X >5PRI SEx S8Irp (33)

Vet \ 86X 6Pri ) 6Ver = 8lgp 6Veir

In order to calculaté Ey/§Pg; in the parentheses of the r.h.s., we use the simple two-point
numerical derivative. Other quantities in the r.h.s. of equation (33) are calculated from
@gi(r) anddggi(r) /8 Ver(r’, R) in each AS. The latter quantity is expressed by the use of
the two independent solutions of the radial Shinger equation, equation (27) [1] (and
their energy derivatives). The logarithmic derivativeg, are not the variational parameters,

but are the quantities determined self-consistently in such a way thais set equal to the
centre of the gravity of the occupied states in the projected density of states (DOS). On the
basis of an equation similar to equation (33), we can also calcéiate, R)/3Ver(r', R').
Finally, we obtainV*(r, R) = § Ex/8nS(r, R) from the ASA version of equation (21):

R , 6ni(r', Ry .,
TR =L, O SR 34

Here, the summation with respect B is carried out only within the unit cell. We do not
have to consider an impurity-like potential variation in the calculatio Bf/5 Ves(r, R)
and Sng(r’, R')/8Vert(r, R). Instead, we take a variatioBVex(r, R) preserving the crys-
tal symmetry. The corresponding responses:inare then compatible with the crystal
symmetry.

3.2. RPA correlation

In the evaluation of the functional derivative of the RPA correlation in the LMTO-ASA, we
first have to calculatév/“=C. This is done by extending the product-basis method proposed
by Aryasetiawan and Gunnarsson [11]. The products of the radial functions are defined as

Bi(1) = g, (NP, YL (O, D) (35)

wherei = (R nila, nalp, L), andl of L satisfies|ly — o] <1 < l1+ 1> (we neglect products
containing¢; see [11]). R denotes the AS in the prlmltlve cell; thi® = (R, T).
denotes a crystal translation vector. Taking the Bloch surB;6f) gives

Byi(r, T) = €*T B, (r). (36)

D% andD = D°(1—vD°%! can be expanded into these Bloch bases. The matrix elements
of D are written asd¢ = 0 is suppressed)

D(k,i, j) = (Byi|D|By;) (37)
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where By; denotes the orthogonalized functionsfhjj. Then we can expan®, = vDv
as

Wo(r, R, 7/, R) = Z Chs(r, T)Wy(k, s, 1)C}, (7', T") (38)
k,s,t
Wo(k, s, 1) = Y (Cs|v|Bri) D(K, i, j){B;j|v|Chi) (39)

ij

where new orthogonalized-basis functionS;, are constructed from 5,(7') =
{rBi(r), r"Y.(6, $)} in the same manner as was used for construdbing Heren denotes
an integer satisfying & n < nJ® (for / = 0), and 1< n < n}'® (for [ > 1). In our
previous paper [5], we usefly, even for this expansion of,. In that caseV® in the
vicinity of a nucleus was not so reliable becauggr) for the core states changes very
rapidly whenr — 0. ForC,(r), the rapid changes are suppressed by the factor

With this expansion forW;“:", we can evaIuatéEcl/(Sfof(r, R), in the same manner
as equation (33), where we have to replaer by Jr g, which is defined with
Wg’:(’(r, R, 7', R) instead of ¥|(» + R) — (' + R)| in equation (31). Therefore we can
calculateVEi(r, R) by the inversion of equation (34) frodEc,/sVET(r, R).

prxe

| (A) ny=120, SREL, CC |
Vet

[ (B) n=35, NREL, CC]|

We=o

(C) V=< through Eq.(34):
n,=120, NREL, no CC

rxe

Figure 1. The self-consistency cycle for the EXXRPA. n; denotes the number @fpoints
in the IBZ (we show the:; used in the case for metals). ‘SREL’ denotes the scalar-relativistic
case. ‘CC’ denotes the combined correction [21].

We have developed a code to perform the self-consistent calculatiovi“féogether
with V*. The flow chart of the self-consistent cycle is shown in figure 1.
There are three parts of the calculation:

(A) the self-consistent scalar-relativistic calculation with combined correction for a
given V¢,

(B) the non-relativistic (NREL) calculation for obtainirig, for a given yeff,

(C) the NREL calculation of*¢ with no combined correction for a giver®™ and
wy=0.

Parts (B) and (C) are carried out to obtai® for given V. Our calculation is based on

the LMTO-4 code [24]. In the calculation d¥, of part (B), we have used a part of the

G W-program [25, 26] provided by Aryasetiawan, though we use a tetrahedron method [27]
in the calculation ofD®. Part (C) is developed from the LMTO-ASA EXX code used in
reference [4]. The calculation is scalar relativistic with a non-relativigti€ (the previous
results [2-5] were non-relativistic).
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4. Results and discussion

We give the results of three different types of self-consistent calculation:

(i) those obtained using the OEP method with EXX and the RPA correlation, denoted
by EXX 4 RPA;

(ii) those obtained using the OEP method with the EXX energy and the LDA correlation,
denoted by EXX;

(iii) the results of usual LDA.

As the LDA correlation, we use the parametrization given by von Barth and Hedin [28].
This LDA gives the same total energy as the EX>RPA in the case of the homogeneous
electron gas.

4.1. Cu, Fe, Co, and Ni

We use the experimental lattice constants at zero temperature, 6.809, 5.406, 6.682, and
6.644 au [29] for Cu(fcc), Fe(bcc), Co(fcc), and Ni(fcc), respectively. Egland E¢, we
take pairs(R, R’) within up to the second-nearest neighbours and treat 4s, 4p, and 3d as
valence orbitals. In procedure (B) of figure 1, the calculationngO, we use 35-points
in the IBZ, and we use 12@-points in parts (A) and (C). We use a minimum number
of k-points for part (B) to reduce the computational work. We use product basis of 96
B;s, and 190C;s. We omit the core eigenfunctions of 1s2s2p in the calculatioPobf
equation (22).

In order to evaluate the numerical errors due to the cut-offs of the numbepoints
and the number of the bas{gs, we have calculated the changes in the results occurring
when we change these numbers (by carrying out the first iteration from the converged
results). For Fe, we have done the calculations witlt-f@ints for part (B) of figure 1 and
the calculations for some different number@s. In addition, we have done the calculation
including the 1s2s2p-core contributions . They indicate that the errors in all of the
eigenvalues®/ — . are less than 0.01 eV.

In figure 2, we show the self-consisteWit® = V* 4 V¢ 4+ V2, In our previous work,
we were not able to determine the constant part included”th because we calculated
the functional derivativesE/dns(r) and so on under the constraint that the number of
electrons is fixed [2-5]. In the present calculation, we calculate these derivatives without
imposing such a constraint. This makes it possible to deterithend V! including
their constant parts through the inversion of equation (34). Wieobtained by using the
EXX + RPA are rather close to those obtained using the LDAshows a large difference
between up and down spins and it almost cancels the contributi®f,ofrhich alone gives
too large a magnetic moment [3].

The contribution ofV®? is largely cancelled by/¢! in the vicinity of the core region.
This can be explained by the fact that(ry, ) is sufficiently short ranged for a given
dn(r) in this region, which allows us to evaluai&. approximately by use oWg’=°(r1, 1)
instead ofWF‘;)=°(r1, r7) In equations (25) and (26). In this case, we ha¥g; + §Ec; = 0
because

/d’l"l DS(T‘l, ro, 11 =1tp) =0.

On the other hand, we see a rather large cancellation betw&eand V! in the outer
region ¢ = 1.0 au). This is because the main contributions#.; in equation (25) comes
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‘ ‘ I
-17Fe RPA Correlation potential |

2

Energy(Ry)
Energy(Ry)

, Energy(Ry)
o © o
i i

Energy(Ry)

O
V)

| —EXX+RPA 4 1
0.3 | LDA | 4 Exact exchange Vx
L5 > L w \ J

1 2

r(a.u.) r(a.u.)

T \ ‘ \ ‘ \ ‘
RPA Correlation potential |

7” Vc:Vc1+Vc2
g 2
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g 4 | o
W | ——EXX+RPAW
LV P+ v M
-6 2 42
0.2——+—"F—+—+F+—=
n | | | | ]
0.1 ‘
3
5 | -1
o 0 z 2
o1 B
0.2 |f i
i —EXX+RPA _ -
-0.3 . —LDA, | 4 Exact exchangevx |
0 1r(a.u.) 2 0 1 fau) 2

Figure 2. The exact exchange potentiéK and the RPA correlation potenti&l® = V¢ 4 y¢2
for Cu, Ni, Co, and Fe. The LDA XC potential [28], used as the reference, is calculated for the
density determined by the self-consistent calculation using the £XRPA.
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from the integral in the region2° ~ 0, where we expect the behaviourwg’=° to be as
follows: Wy=0(r1, 72) ~ —1/|r1 — ra|.

-1 // 2
3 s
2| S~ | — =
g Ni
C -
L
-2 _ |
0 ; |

r(a.u.)

Figure 3. Comparison ofV/ <2,

V¢ itself has the meaning of a measure of the screening length: if we assume a simple
form for the screening given by;”fo(rl, r2) = eXp(—k|ry — r2|)/|r1 — r2|, we can set
Vv = — by definition. In figure 3, we replov? for comparison. The/®?s for Fe, Co,
and Ni are very similar, though they are different from that of Cu, which is rather flat for
r > 1.0 au. Since we have little contribution from the 3d state®foin equation (22) in
the case of Cu, the difference indicates the effects of the screening by 3d electrons.
The eigenvalue dispersions are shown in figure 4 together with those calculated by using
the usual LDA, and by using the EXX. The results obtained from the BX®PA are very
close to those obtained by using the LDA, and are very different from the results obtained

using EXX.

Table 1. Calculated spin magnetic momengsg). We use the experimental lattice constants
(see the text). The experimental spin magnetic moments are deduced from the saturation
magnetization and thg-values [39]. In parentheses, we give the values for the lattice constants

obtained using the LDA [40].

LDA EXX EXX +RPA  Experiment

Fe 2.22(2.13) 3.40  2.05(2.00) 2.12
Co 159(154) 225 157(1.52) 1.59
Ni 0.61(0.58) 0.68 0.57(0.57)  0.56

In our method, we determine the screened Coulomb interawpﬁo and Vet self-

consistently at the same time. This makes the method applicable to a wide range of solids.
However, our results for the energy bands in the present metallic systems are very close to the
LDA results. This implies that it may not be necessary to detentléO self-consistently;

that is, we are allowed to use the fixéﬂ;,FO calculated from the LDA eigenvalues (and
eigenfunctions) during the self-consistent calculation. We have tried such a calculation for
Fe, and obtained the magnetic moment 2.0 which is close to the self-consistent value
2.05ug given in table 1. Thus we can safely uB&’=C from the LDA in most cases.

We show the calculated Fermi-contact parts of the hyperfine fields in table 2. They
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Figure 4. Energy bands obtained by performing three different types of self-consistent
calculation: LDA, EXX, and EXX+ RPA calculations. EXX denotes the calculation which
is performed with the LDA correlation [28] potential plus the EXX potential.
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Table 2. The Fermi-contact part of the hyperfine field (kG). The nuclear sizes are taken into
account. The corresponding experimental data are taken from reference [31].

4s
Total 1s 2s 3s (valence)

Fe
EXX+RPA —-329 +86 —734 4370 -52
LDA —279 —-19 -516 + 302 —46
Experiment —375
Co
EXX +RPA —-323 +37 —635 4327 -52
LDA —235 —-17 —429 4267 —57
Experiment —314
Ni
EXX+RPA -135 +1 -251+4132 -17
LDA -85 -8 -178+114 -14

Experiment —114

are rather different from the LDA results. By the use of the self-consistently determined
V*¢, we calculate the hyperfine fields by means of the scalar-relativistic KKR-ASA code
developed by Akai [30], where the wave function near the core is carefully treated and the
core-size effects are taken into account [30]. The large positive partg“of V| near

the nucleus (figure 2) cause the strong negative polarization in the 2s state. In addition,
our calculation shows positive polarization in the 1s state. This is different from the LDA
result, which gives a negative polarization for the 1s state. We think that this comes from
the strong 1s—2s and 1s-2p exchange interaction in the tail region of the 1s state. In order to
gain the exchange energy, the 1s state should polarize negatively in the tail region, resulting
in positive polarization near the nucleus. Our method can take into account the screened
exchange effects in rather a reasonable way, whereas the LDA essentially fails in such a
region whereVn/n is very large [31]. The present method improves the agreement with
experiments considerably.

4.2. Si and MnO

The lattice constant for Si is 8.40 aR{ = Rgs = 2.526 au) where Es denotes the
empty spheres, and that for MnO (a type-Il antiferromagnet) is assumed to be 10.26 au
@Mn = 2923 au andRo = 2.2 au). For MnO and Si, we use a smaller number of
C,s (e.g. 126C;s for the Mn AS); we have checked that this is enough to reproduce the
eigenvalues with an accuracy better than within 0.01 eV in the case of Fe. The numbers
of k-points in the IBZ are, respectively, 19 and 29 in MnO and Si in all of the procedures
((A), (B), and (C) of figure 1). We take the pai(®, R’) within up to the second-nearest
neighbours for Si, and within the first-nearest neighbours for MnO. In figure 2, we show the
self-consistent/*¢. The constant parts of* and V! are fixed arbitrarily for presentation
purposes; they are not determined uniquely by our zero-temperature method in the case of
insulators.

The eigenvalues of Si are shown in table 3. Using the EXRPA does not enlarge
the band gaps very much from the LDA values. For example, the minimum gap increases by
only 0.19 eV. The corresponding value given by Godby{ighl and Sham in reference [12]
was 0.14 eV. We can say that the agreement between these values is reasonable, considering
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Table 3. Eigenvalues (in eV) for Si calculated by the EX>RPA, by the EXX and by the LDA
(scalar-relativistic) methods. They are given relative to the eigenvaligesf (the top of the
valence band). In addition, we show the results of the true DF calculation by GodheiShl
and Sham.

EXX EXX+RPA LDA GodbyetaP Experimerft

Si

Ly, -957 —9.75 ~9.77

Ly, —6.86 —7.09 -7.15

Ly, -113 —1.18 2120 —1.21(-122) -12+02,-15
Lie 204 158 1.35 1.62(1.53) 2.1,42+ 0.15
Lze 362 3.34 3.22  3.49(3.37) A6+0.1
r, -11.86 —12.08 ~12.11 —125+0.6
Iisc 305 278 2.65 2.68(2.57) 3.4

Iy. 383 3.34 2.96  3.66(3.56) 4.2

X —7.75 —7.93 ~7.96

Xay —2.79 —2.90 —2.92 -2.9,-33+02
X1 129 075 0.56

E, 115  0.62 0.43  0.66(0.52) 1.17

a Reference [12]. The LDA eigenvalues shown in parentheses are slightly different from our
LDA values because of the difference in computational details.
b The experimental values are taken from reference [41] for Si.

‘ I I I
- VXC:VX +VC i
OfS L exxerpal A S
rrrrrrrrrrrr LDA ‘ ‘/
05 / T /
> S
o
E Es
s | | I\ LAl | M
L
-1—
Sita — V,
/ | 7VC
-1. 1 - : 2

2 0 1
r(a.u.) r(a.u.)

Figure 5. The exact exchange potentigl and the RPA correlation potenti&® for Si. The

LDA XC potential [28], used as the reference, is calculated for the density determined by the
self-consistent calculation using the EXXRPA. There exists an ambiguity in the constant
shifts for V* and V¢.

the difference in the computational method; their method used pseudopotentials and was not
self-consistent but was free from the static approximation described in sectioriz,fdn
figure 5, we see that’® cancels the large difference & between Si and empty spheres.



9256 T Kotani
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Figure 6. The DOS for MnO.

As a result,V*¢ obtained using the EXX- RPA becomes very close to that obtained from
the LDA.

We show the DOS of MnO in figure 6. To plot the eigenvalues of the unoccupied
states for MnO precisely, we recalculate these values &yith which are set to about the
eigenvalue of the bottom of the conduction bands [24]. The results obtained by using the
EXX 4 RPA are very different from those obtained using the LDA; the exchange splitting
of Mn(3d), ~8 eV, is much larger than the LDA value;4 eV, and smaller than the EXX
value, ~13 eV [4]. The DOS shows good correspondence with the XHBS data on
MnO [13]. For such a system as MnO, with a large band gap, we cannot expect large
screening effects like in metals. Therefore, it is reasonable that the/ERRA results lie
in between the LDA and EXX results. We can see this point also from figure 7, where
we show the self-consistet*: the contribution ofV* is only partially cancelled by ¢,
which is different from the case for metals.

In contrast to the LDA results, the tops of the valence bands obtained by using the
EXX 4+ RPA have large O(2p) components. The exchange effect, which works as an attract-
ive force and was not correctly treated in the LDA, pushes down the localized occupied
bands relative to the unoccupied bands. The effect is stronger for Mn(3d) bands than for
0O(2p) bands because Mn(3d) is more localized. Our method can give a reasonable screening
effect for the exchange. It gives a good agreement with experiments as regards the DOS.
The corresponding energy bands are shown in figure 8. The bottom of the conduction bands
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Figure 7. V*° for MnO. In (b), we show the decomposition #7¢ = V¢! 4+ V2,

is s-like, and the minimum gap of 2.3 eV obtained from the EXXRPA is much larger
than the LDA result, though it still is smaller than the experimental valuesot®.1 eV
[32]. The spin magnetic moment of 4.6& gives a better agreement with the experiments
(4.79 /LB—4.58 “B [33, 34])

In reference [26], for NiO it was shown that th@W-calculation with W, based on
the LDA eigenvalues gave poor results because of the LDA band gap being too small,
and that self-consistency @f W was necessary. We can avoid this difficulty of ®iéV-
calculation by use of the OEP method; we expect thatZlé-approximation starting from
the eigenvalues and eigenfunctions given by the EXRPA method will give reasonable
agreement with experiments.
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Figure 9. The DOS for MnO (the on-site-only case).

4.3. Further discussion

E,. consists of all of the contributions from all of the pai®, R’). However, we can expect

the contributions of® £ R’ not to be large compared with the contribution®f R’, and

they might be negligible. In order to examine this point, we have performed an on-site-only
EXX + RPA calculation, where we take only tlie= R’ term into account. The difference
from the full calculation is not so large for Fe; it gives a slightly larger moment, 24.0

The bottom of the valence band (the bottom of the s bands) relative to the Fermi level is
pushed up by~0.5 eV, though the d bands are essentially unchanged. On the other hand, the
difference in the DOS from the full calculation is not so small in the case of MnO, as shown
in figure 9. In this case, the on-site-only calculation gives narrower valence bands, and the
conduction bands are pushed up b{ eV, although the spin magnetic moment changes
little (4.71 ug). In conclusion, the on-site-only approximation works, but the quality of the
result depends on the systems and on the physical quantities which are calculated.
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Let us discuss two possible sources of the existing differences between our results and
those obtained using the true DF: (i) the RPA, and (ii) the static approximation for the
RPA. In order to take account of the effects beyond the RPA, we have tofiegiven in
reference [19], which corresponds to the vertex correction. Some parts of the contribution
due to fxc might be taken into account by LDA-like approximations; one of the simple ways
to do this is to add the difference between the LDA XC calculated by using the RPA [28]
and the one calculated by using a more accurate scheme [35]. We tried the above method,
but the correction turned out to be rather small; the magnetization of Fe was enhanced by
0.05 ug (this value is similar to that in the corresponding LDA case). However, we are not
very confident about whether the correction is really meaningful or not. As for the static
approximation for the RPA, the dynamical effects may be simulated by magiffycloser
to v (no relaxation limit). This should reduce the magnitudeV6f Therefore the position
of the d bands relative to the s band should be somehow pushed down for the Cu case (see
figure 2). This estimation concerning (ii) is opposite in the case of the LDA. In the case
of the LDA, we can easily show that the d bands calculated by using the LDA in the RPA
[28] are pushed up from those obtained by using its static approximation. In conclusion, it
seems rather difficult to evaluate (ii) on the basis of a simple LDA-like idea; we have not
yet succeeded in giving any reasonable evaluations for the magnitude of the errors due to
(i) and (ii).

5. Summary

We have presented a new method for carrying out self-consistent electronic structure
calculations, the OEP method with the EXXRPA within the LMTO-ASA. The method
determines not only®", but alsoW, in a self-consistent manner. For Fe, Co, Ni, and
Cu, the agreements with experiments as regards hyperfine interactions are improved from
the LDA results, although the energy bands and the magnetic moments are very close to
those obtained using the LDA. For Si, the minimum gap is only 0.19 eV larger than the
LDA result. This is in reasonable agreement with the results from previous work [5]. On
the other hand, the exchange splitting for MnO is much larger than the LDA result and
in good agreement with experiments [13]. We expect that Gt#-calculation starting

from the eigenvalues self-consistently determined by the OEP method will give reasonable
agreement with experiments. We have not developed the code to calgffdtatself yet.

The static approximation in the evaluation of its functional derivaigZ&™/sn® cannot be
applicable. We are now trying such calculations to determine lattice constants and other
cohesive properties.
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Appendix A. Discontinuity of V*¢ and the band gap

The inversion equation for obtaining™®(r) = § Exc/dn(r) is

8 Exc / . n(r') SEx

svelimy — | % svefie) sn(ry” (AL)
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In the case of insulators with band gaps, we have a discontinui%*in This comes from

the differences between two limits: (a)— u* and (b)u — w~. We can easily show that
8Exc  SExc SEy. 1 SN

svefiiry — svefi(r) S SN /S SVefi(r)

(A2)

sn(r')  en(r)  sn(r) 1 SN
svefip)y — svelfiery s SN /S sVefi(r)

where only the second terms on the r.h.s. are dependent on the limits. The first terms (with
underlines) are the quantities defined under the condition of fixed total numbers of electrons;
their integrals with respect t0' are equal to zeroN denotes the total number of electrons
per cell. §/8,. corresponds to the constant shift Bff(r). By substituting the solution of

V*¢ + C. (C+ denotes the constant part for each limit) for equation (Al), we can obtain
two equations for determining*® and C:

(A3)

SExc , on(r) o,
v = | & gy V) (A9
((SExc) Z/dr/ <m> (VXC(T/)+Ci). (A5)
S ), S ),

Equation (A4) determine§*¢ to within a constant. Apart from such a constaut® is
independent of the method of taking the limits (a) and (b). Equation (A5), which determines
C, can be rewritten as

AEx|, = AV*| +Cs (AB)

where A E,. is the difference between twB,:s, one for adding and another for subtracting
one electron by shifting. in the statek, which corresponds to the lowest unoccupied
state or the highest occupied state. It is equakfd*(k, ;). Therefore the discontinuity
Ayc = C, — C_ can be written as

Axe = (ZRPAky, €r,) — (ki |[Vlky)) — (ERPAG_, € ) — (k- |V*°lk_)) (A7)

where we useAV*® = (k|V*°|k). Ay agrees with the band gap which is calculated by
using theG W-approximation. This equation is a generalization of the equation used in the
evaluation of the discontinuity in reference [9].
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